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Republic of Germanyf, and Institute of Experimental Physics, University of Gdansk, 
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Abstract. In this paper, the relationship between the level of statistical errors in a measured 
intensity autocorrelation function and the relative size distribution width uncertainty is 
estimated. The results of the Fourier analysis of statistical errors existing in measured 
autocorrelation functions indicate that the individual error course can be similar to the 
systematic distortion. This has been also confirmed experimentally. The problem of the 
baseline error is also discussed. It  is shown that the baseline error is compensated in 
dynamic light scattering data during normalisation. 

1. Introduction 

The size distribution of suspended particles has recently been a subject of great interest. 
Several authors have used the dynamic light scattering method [ l -51 for intensity 
autocorrelation measurements, and then solved a Fredholm integral equation of the 
first kind [6] in order to obtain a size distribution. In general, the determination of 
size distributions from a Fredholm integral equation is an ‘ill-posed’ problem and 
leads to difficulties because of the existence of an infinite number of oscillating solutions 
satisfying the investigated integral within experimental errors. Recently, a number of 
numerical methods have appeared [7- 101 which can be employed in solving ‘ill-posed’ 
problems. 

Experimental work has been undertaken in which size distributions of suspended 
lipid vesicles and size distributions of suspended standard spheres (Dow-latex type, 
see [ 111) were determined from dynamic light scattering data by employing Prov- 
encher’s regularisation method [ 121 (numerical program CONTIN [7]). This method 
has shown that the final relative error of the size distribution width is much larger 
(even a few orders of magnitude) than the relative error of the mean radius r. In 
practice, it is very difficult to obtain reproducible results for the width of the size 
distribution for the same measured sample. 

There are a few possible explanations of this phenomenon: (a) the regularisation 
method (CONTIN program) is very sensitive for noise configuration in dynamic light 
scattering data; (b) the baseline error has a significant effect on the final result; (c) 
samples can be unstable during measurements; (d) there exists another, statistical 
reason for such large uncertainties in size distribution width determination. 
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Explanation ( c )  can be excluded by checking the stability of all important physical 
parameters and by using standard particles in experiments. On the other hand, the 
regularisation method applied to simulated autocorrelation functions, with uncorre- 
lated noise added (without baseline errors) [33], gives quite good results. 

In  general, there exist many sources of distortions of the final result which can be 
placed in three groups: (x )  distortions arising during numerical calculations; ( y )  ‘outer’ 
distortions induced by an  imperfection of measuring instruments or by impurities and  
instabilities in a measured sample; ( z )  distortions connected with the stochastic nature 
of detection and diffusion processes. 

In this paper, the relationship between the level of statistical fluctuations in a 
measured autocorrelation function and the size distribution width uncertainty is esti- 
mated. Several assumptions, similar to those described by Saleh and  Cardoso [ 131, 
are used: ( i )  the sample time interval is much shorter than the field’s coherence time; 
( i i )  the optical field is stationary, cross-spectrally pure and  Gaussian; (iii) a measured 
autocorrelation function contains only statistical errors of the ( z )  type, i.e. we deal 
with an  ideal sample, instrument and calculating method. The fact that the choice of 
the delay timescale, in intensity correlation measurements, can make an  influence on 
the final result has also been taken into account. 

2. Intensity correlation functions in size distribution determination 

A second-order autocorrelation function, ~ ~ ( 2 1 ,  that is available from limited-time 
dynamic light scattering measurements may be expressed, in agreement with Saleh 
and  Cardoso [13], in the form 

N 

&oL = 1 n ( m ) n ( m  + L )  = g o L f i 2 ~  = (g, + E , ) B ’ N  

EEOJ = g‘ = 1 +x5 E { E , } = O  (1) 

m = 1  

N 

~ * = ( I / N )  1 n ( m )  E{n*}=r i  
m = l  

where E is the expectation value, eo‘, dol are ‘unbiased’ estimators of A F ( ~ )  [13, 141, 
n* the unbiased estimator of ri (mean number of counts per sample time), E ,  the 
statistical error, N the total number of samples and ,yL the field autocorrelation function 
[ 131. Expressions (1) are equivalent to 

&.a]( 7) = Bib”( 7 )  = B(g(ZI (7 )  + E (  7 ) )  

(2) 

provided that the ratio sample-time to coherence-time, T,/ T,, is much less than 1 (see 
[ l ,  16-18], and  appendix B). Here B is the expected value of the baseline, ~ ( 7 )  a 
function which describes a course of statistical errors in one data set and  g” ’ (7)  is the 
expected intensity autocorrelation function. In figure 3 (section 6)  are shown experi- 
mental examples of error courses E ( T )  (see also sections 3 and  6). 

A relative size distribution function, SD, can be determined from the field autocorre- 
lation function g “ ’ (  7 )  which is available from g‘*’( 7 )  after subtracting the baseline 
and taking a square root in accordance with the Siegert relation [19-211 

E { E ( T ) }  = 0 B=fi2N ( 7  is delay time) 

g ‘ ” ( 7 )  = 1 + / g ” ’ (  7) / ’  (3) 
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When T, # T,, we obtain the expression for correlations in E ( T )  for unbiased A F ( ~ )  
estimators [ 131 ( T, = W-I;  new arrangement is used compared with the original paper) 

A~~’=COV{g^,,, 2 o K }  = E{g^o,60K}-E{g^,,}E{g,,~ 

= 12 + A, + A, + ALK,r  

= 4 N - { Tc/ T, + 1 / A 1 + 4 N { ( Tc/ T, ) Re(x ? y L  ) + ( 1 / A 1 x ?I 
+~N-’{(T,/T,)  Re(x:y,)+(lifi)xSI 

+ ( 1 / f i  Wx?-, + 2xf+, + 4 Re(x?x,xl -, ) + 4 Re(xLxKx?TTI ) + U,, 11 
+N-’{(T , /T~)[z , - ,+z ,+,+2 Re(x?xKyL-,)+2 Re(xIxKy~+:i.)+u,Kl 

=(l/A)SLK(l+x?)’ (8) 

Here the Saleh and Cardoso notation is used and terms x, y,  z, U are defined in 
appendix A. In the general expression E{g^,Lg^,,} (8) there are three types of terms: 
(i) constant values; (ii) ‘single-point correlations’ depending on the single position X, 

or x, (figure 3); (iii) ‘two-point correlations’ depending on both positions x, and x,. 
All these terms of order Nn are subtracted from E{gOL$OK} when cov{&,, gOK} is 
calculated, and in the expression (8) there remain only terms of order N - ’  which are 
grouped according to (i)-(iii) (terms of order N - 2 ,  such as the variance for bias term, 
are neglected). The constant term of order N - ’  is the value for the variance of the 
baseline error SB (equation (A5) in [14]) 

Var( SB) = E { SB’} = (2/  fi)’ Var( r’i) = 4N-’(  Tc/ Ts+ 1/ f i )  = A. (9) 
On the other hand, the same constant value exists in A::) calculated by Saleh and 
Cardoso [13]t: 

A = - A  + A X ~ X ;  - A, ( 1 + x 5 ) - A, ( 1 + x f ). (10) 
This constant term disappears from the covariance calculated for biased A F ( ~ )  
estimators (6) 

A,, = COV{ĝ ‘, iK} = A:;’+A::’ 

= ilxtx? - A 2 L ~ t  - A,xf + 14tK,r. (11) 
From (8)-(11) one can conclude that the baseline error is eliminated from dynamic 
light scattering data after normalisation. In order to prove this, we can employ a kind 
of formal calculus, which can be helpful in the interpretation of terms existing in 
covariances (8), ( lo) ,  (11) calculated by Saleh and Cardoso [13]. First, we should 
point out that for a limited-time dynamic light scattering experiment the contents of 
all correlator channels (unbiased A F ( ~ ) )  can indicate the common shift, compared with 
the mean value fi*N, because the same information about fluctuations n ( m )  is intro- 
duced simultaneously into all memory channels of a correlator through the input 
counter and multipliers (figure 10 in [23]). The statistical error course E (  T )  (in equations 
(21, ( 5 )  and (6)) can be expressed then as a sum of two random variables: constant 
shift SE, plus reduced noise fluctuations E , (  T )  (figure 3), which are mutually uncorre- 
lated in the stationary range of E , ( T )  (random process E , ( T )  is non-stationary when T 
is not much larger than T,; see section 5.2 and appendix A): 

(12) E (  7) = E , (  7)  + SB, 
t Note that terms d,, in [ 131 should be corrected to 

d,, = -4[1+(1+,y:) Re(,yfy,)+(l+,y:) R e ( ~ F y , ) l + 4 , y ~ , y ~ .  
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where E { E , ( T , ) E , ( T , ) } + ~  if 7; + CD or T ,  +CO and E { ~ B , E , ( T ) }  # 0 in the non-stationary 
range of E , ( T )  (figure 3) .  Next, we can express the biased estimator of A F ( ~ ) ,  by using 
( I ) ,  (12) and  the definition of 6 B  given in ( 5 ) ,  as 

iL = eOL/fi i0,(1 - S B +  6B’) 

= g, -4- E,( 7,) 6B, - 6B - 6Bxs - 6B6B, - a&,( 7‘) + 6B2+ 6B2Xf 

E { S B ) ~ E { S B , } = E { E , ( 7 , ) } = O  (13)  

and calculate the covariance matrix A,,, in which should appear auto- and cross- 
correlations for all random variables from (13 ) .  We obtain (terms less than those of 
order N - ’  are neglected): 

A,, = E { (  S B c  - SB)’} + E {  SB’}XSX: - E{B&r(TL - E{aBEr(T, )>XS 

+ E { E , ( ~ ,  ) E r ( T ,  

+.{(a& - - 6 B ) ( E , ( T ‘ ) + E , ( 7 , ) ) )  (14) 

A::’ = E{SBS} E{aB.cEr( 7,)) E{SB,Er( )> + E{&,( 7, ) E r (  I} ( 1 5 )  

+ E{SB’  - a ~ e a ~ } ( x f  + x:) 

where 

and  

A::’= -E{26B,6B - 6 B 2 } +  E { 6 B 2 } x ~ x ~  - E{6B&,(TL))(1 +xi) 
-E{  BE,( 7,)}( 1 + xf)  + E {  6B2 - S B , S B } ( x ~  +xi). (16) 

Comparing ( 1  1 )  and (14) we conclude that there will be no constant term in At< when? 

6B, = 6B (17 )  

and then (8), ( lo) ,  ( 1  1 )  and ( 1 9 ,  (16), (14) are equivalent, respectively, with A = E{6B’}, 
A ‘ =  E{SBE,(T,)} ,  A, = E { S B E , ( T , ) } ,  A,,3r= E { E ~ ( T ‘ ) E ~ ( T , ) } .  We can say then that the 
constant shift in E ( T ) ,  6B, (constant shift in all correlator channels), and  the baseline 
error 6B in h vary covariantly during the measurement (see also figures 3 and 4, 
section 6) and that the baseline error 6 B  disappears, with the accuracy of order W ‘ ,  
from dynamic light, scattering data after normalisation, i.e. after subtraction of the 
measured baseline B from unbiased A F ( ~ )  estimator (equations ( 5 ) ,  (12), (17);  see also 
appendix B).  This surprising result we call ‘self-compensation in correlation measure- 
ments’; In fact, we could expect such a result because in the channel contents, as well 
as in B, is stored the same information about the fluctuation of the mean number of 
counts. This expectation is expressed by Jakeman er a1 ([14] p 521) and simulations 
made by Oliver [17] indicate that the smallest errors in linewidth determination are 
achieved when the measured (not expected) baseline is used in the normalisation 
procedure. In figure 4 (see section 6) we see that shifts 6B, are compensated after 
normalisation. When ( 1 7 )  holds then (14) simplifies to (see also ( 1  1 ) ) :  

(18) 

Here the last term is responsible for correlations in reduced noise fluctuations. This 
is the only important error term in size distribution or  linewidth determination for the 
following reasons. 

A,, = E{6B2)xfxt - E { S B E , ( T , ) } X ~  - E { S B E , ( ~ , ) } X ~ +  E { E , ( T ~ ) E ~ ( T , ) } .  

t In fact, SB = 6B, +$B:  - SB, [35]. 
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(a) The term E(6B2}xfxZ, describes correlation between normalisation contribu- 
tions SBxf and SBx? (appearing during division of unbiased A F ( ~ )  estimators 6,, and 
Go, by h; (13)) which are insignificant in size distribution or linewidth determination 
(see (6), ( 5 )  and (4)). This term, however, is important when the comparison between 
biased A F ( ~ )  estimators, g*', and expected value, g,, is performed and then (18) expresses 
the variance (when T' = I,) for iL - g ,  (Jakeman et al [14], Saleh and Cardoso [13]). 

(b) The terms - E { ~ B E , ( ~ ; ) ) x Z K  and -E{GB&,(T , ) }X?  describe the fact that reduced 
noise fluctuations are correlated with the baseline error (in the non-stationary range 
of reduced noise fluctuations-see sections 6 and 8) but this cannot have any influence 
on size distribution or linewidth determination. These terms, however, are important 
when the variance for iL - g, ( T,  = T, ) is calculated because reduced noise fluctuations, 
in the non-stationary range, have on average opposite signs than normalisation contribu- 
tions (see section 8). 

(c) Baseline error is compensated during normalisation. 
Finally, the following expression is responsible for noise correlations and the 

variance (7, = T ~ )  of statistical errors in a measured A F ( ~ ) ,  when size distribution or 
linewidth is determined: 

= E { E , ( ~ , ) G ( T , ) )  (19) 
in agreement with (12), (171, ( 5 ) ,  (6) and (4). Hence, we have in the monodisperse case 

A = W'{ (  T,/ T,)[ (f + 1 x, - x, I ) exp( -21x, - x, I ) + 3 (f + (x, + x, ; :xp( - 2( x, + x, ) )  

+ 4( 1 + Ix, - x, 1 )  exp(-(x, + x, 1 - Ix, - x, I ) I  + (2/ 4 [ e x p (  -2/x, - x, 1 )  
+ 2 exp( -(xL + x,) - /x, -xJ)  + 3 exp(-2(xL + x,))] 

A,,,,= N - ' [ ( T , I T , ) ( ~ + ~ ~ - ' + ~ ( ~ + x )  e-'")+(2/ii)(1+2 e-"+3 e-2") 

(21) 
This equation agrees almost perfectly with the variance calculated by Schatzel [ 151 for 
so-called 'modified' A F ( ~ )  estimators (equation (25) in [15]), if the limit T,/T,-,O is 
considered. 

+( l / i i ) ' ( l  +e-")]  x = 2r7,. 

4. The choice of the delay timescale 

The problem of the choice of the timescale in correlation measurements has been 
discussed by several authors [ 14,22,23,34]. Here, only one aspect of this problem is 
dealt with, namely distortions which can appear when a square root from A F ( ~ )  is 
calculated in order to obtain AF( 1) .  Based on (6),  (12), (17) we can plot the functions 
(figure 1) 

Ag(,L(7) = Ig" ' (T )1  -(lg")(7)12* ~ ( 7 ) ) " '  

AgL2J( T )  = * a( 7) (22) 
where the factor m, which has no influence on SD (or linewidth) determination, 
is replaced by 1 and u(7) is a standard deviation for reduced noise fluctuations E ~ ( T )  

in A F ( ~ )  (21). Expressions (22) describe limits (standard deviations) for statistical 
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Figure 1. Statistical noise level in a measured autocorrelation function. Curves a, a‘ and 
b, b‘ are standard deviations for noise level in normalised AF( 1 )  and AF(2),  respectively, 
calculated acording to (21 ) .  Curves e and f are normalised second- (value 1 subtracted) 
and first-order autocorrelation functions, respectively. x = T/ Tc,  T,/ T, = 68, ti = 0.5, 
N = lo8. 

errors in A F ( ~ )  and A F ( ~ ) .  We must use here a convention that m= -- if 
F ( 7 )  < 0. From figure 1 we see that there are three characteristic regions and in intensity 
correlation measurements we should always avoid the second range, for which standard 
deviation functions Ag‘,L( 7) are not symmetrical, if the transformation from g”’ to 
g“’  is required. 

By setting the proper value for the sample time in a correlator, it is possible to 
fulfil the first region conditions 

1 3  (g’2’(7) - 1 )  30.01 or 1 3 g”’(  7) 3 0.1 (23) 

valid when N = lo8 and ri = 0.5 (in general, the position of the second region and  low 
limits in (23) depend on the number of samples and mean number of counts). This 
range corresponds to that proposed by Pusey and  Vaughan [22], for which we have 
the maximum information about the decay constant of the A F ( ~ ) .  

When conditions (23) are fulfilled then we can estimate (6) in the first range for a 
single measurement (relations (12) and (17) are used; 

&”(7) t g ( ” ( r ) +  Agb”(7) 

is replaced by 1) 

= g‘ ’ ’( 7)  E , (  7 )/ (2g‘ ”( 7)) .  (24) 
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5. Power distribution of the noise in the second-order autocorrelation function 

5.1. Noise in the intensity of scattered light 

A F ( ~ )  is formed from intensity fluctuations n ( m )  in the light scattered on particles 
moving randomly in the solution (1). Measured intensity fluctuations are influenced 
by two random processes (two types of noise): photodetection (shot noise) and diffusion 
(Brownian motion of particles in a measured sample-diffusional noise). In dynamic 
light scattering experiments, when a single-photon counting method is used, the 
intensity correlation function and the power density spectrum, PDS, may be expressed 
as [25-281: 

g ( 2 ) ( T )  = (1/5)6(T) + 1 + Ig“’(T)l’ 

= ( 1 / 5 ) 6 ( ~ ) + 1 +  [G(T’)*G(T’)] exp(-r‘lT/) dI” 

(25) 

I: 
= (1/ fi)gb2,‘( 7 )  + gL2’( 7) 

and 

Here G(T‘) is the polydispersity of the measured sample (see [28] and also appendix 
A) and r’= D ( r ) q 2  (4); ‘*’ denotes a convolution. In the monodisperse case, when 
G(T’) = 6(T’-r), we have 

T- 

The courses of correlation functions (25) and power density spectra ( 2 6 )  in the 
monodisperse case (27) are well known in literature (see figures 3 and 4 in [27]). 
Photodetection noise has constant PDS (‘white’ noise which corresponds to the correla- 
tion function concentrated in one point), but diffusional noise has power density 
concentrated at low frequencies. PDS can be also obtained from an experiment in 
which intensity fluctuations are treated by a spectrum analyser in which a bandpass 
frequency filter has constant Aw [24]. On the other hand, by keeping constant the 
quality of the measuring circuit, Q = w / A w  =constant, it is possible to obtain a power 
spectrum 

S , ( w ) A w  = ( p , ( w ) / w ) A w  = P , ( w ) ( A w / w )  = P , ( w ) ( l / Q )  (28) 

which describes a power distribution of different frequency components in light 
fluctuations (measured signal in spectrum analysis is proportional to S,( w ) A w ) .  From 
(26), (27) and (28), and using w = 27r/ T, we have (by neglecting DC photocurrent) 

1 rr, 
T T’+ ( TT,)’ 

Pi( T )  = ( l / Z )  -+ 

= ( 1 / fi  ) Ppi,( T )  -+ P d (  T )  T, = i/r. (29) 

This is a power spectrum, PS, in a period domain and Pph( T ) ,  Pd( T )  are power spectra 
for photodetection and diffusional noise respectively. These functions are plotted in 
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z 

Figure 2. Normalised power spectra (to the maximum = 1) for noise in measured intensity 
fluctuations in the period domain. Curve a is the power spectrum for photodetection noise 
and curve b is the power spectrum for diffusional noise. Curve c represents the power 
spectrum for diffusional noise which is present only in a measured autocorrelation function. 
Lorentzian case; z = T /  T,. Curve b has the maximum at z = TT and curve c at 2 = m 3. 

?- 

figure 2 separately, normalised to the maximum equal to 1. Photodetection noise power 
is mainly concentrated at high frequencies (typical period 2 T,, T, = sample time) 
while diffusional noise has a power maximum at T,,, = TT, and its distribution is 
rather broad. 

5.2. Noise in the second-order autocorrelation function 

A measured and normalised A F ( ~ )  always contains a statistical error (noise) the actual 
course of which is described by reduced noise fluctuations E , ( T )  (sections 2 and 3). 
Similarly as for intensity fluctuations, section 5.1, we can obtain a PS for fluctuations 
E , ( T )  by applying the Fourier transform to the general expression A,,,, from (8)  which 
describes the correlations in E , ( T ) .  These correlations may be expressed in the form 
(appendix A): 

A L K , r =  ~ - l {  ( T c / T s ) [  jox G(r ,  7,) exp(-r(T, - 7,))  d r  

3 + 4  [oxjox c,(r, r', 7,) exp(-(r+r ')(T, -7 , ) )  d r  d r '  

where T,= W-'  is the effective coherence time [13] and T, and T, are positions of 
points of in A F ( ~ )  for which the correlation A,,,, is evaluated (see figure 3). Distributions 
G(T, T,), GJT, r', T ~ )  and function ~ g " ' ( T , ) ~ '  in (30) depend on the position T~ in 
A F ( ~ )  but tend to G(T, CO), 0 and 0, respectively, when T, +CO (see appendix A). It 
means then, that a random process E , ( T )  becomes stationary when r, >> T, (the tail of 
A F ( ~ ) ) .  From (30), by employing the Fourier transform, we have the PDS for the 
stationary range of E,(  7)  
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In the monodisperse case, one can simply compare power spectra for E , ( T )  with 
those for intensity fluctuations (see section 5.1). Based on (20), we have correlations 
( 7 ' 3  7, >> i / r )  

and the corresponding PDS 

For the diffusional noise only ( i i  large) we have a PDS 

or a PS 

P,( T )  is plotted in figure 2 (normalised to the maximum = 1) in order to compare it 
with p d (  T ) .  It has a maximum at T, = &.xT,. In the case when ii is not very large, 
the final PS, as we can see from (33) (after transferring this expression to the period 
domain), is a simple combination of P,( T ) ,  p d (  T )  and Pph( T ) .  

As was mentioned above, the random process E , ( T )  is not a stationary one, but 
this non-stationary range is limited only to T not much larger than T,, which is also 
the best for the measurement of A F ( ~ )  (see section 4).  The determination of PS in this 
region is a difficult task but it seems that two kinds of approximation are considered. 
First, we can say that when T ,  T, then A,,,, describes a correlation in a quasistationary 
process in the non-stationary range of E , ( T )  (random processes in points T~ = T,  have 
nearly the same distributions G(T, T ~ ) ,  G,(T, r', T,) and nearly the same variances, 
(21)) and put T~ =constant in both distributions and in function / g " ' ( T , ) / 2 ,  occurring 
in (30), during PS determination. This procedure gives different spectra for each point 
in the non-stationary range of E , ( T ) ,  

The second approximation, which could be useful in simulations of diffusional 
noise in A F ( ~ )  [31], is based on the assumption that spectra in non-stationary and 
stationary ranges do not differ too much. This can be easily checked in the monodisperse 
case by using the first approximation (this is also seen in figure 3, see section 6 ) .  The 
final diffusional spectrum is always a combination of P,(  T )  and Pd( T )  but with different 
coefficients. The main difference between these two ranges is then in the variance of 
diffusional fluctuations (21). The second approximation then corresponds to the 
extension of the stationary spectrum (33) on the whole T range with the appropriate 
deviation scale (21). 

From figure 2 we can conclude that in real, measured A F ( ~ )  we should expect 'fast' 
fluctuations (fast, compared with the delay timescale (23)) being mainly the result of 
the photodetection process and rather 'slow' diffusional components with the most 
probable period T, lying between TT,  and V ~ T T , .  In  other words, fluctuations in 
measured A F ( ~ )  look similar to those in the intensity of scattered light (see figure 5 in 
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a n  article by Ford in [l], but of course the deviation range for them is much smaller 
because of the factor N-’  in (33)-(35). 

6. Experimental 

In order to see statistical error courses in A F ( ~ ) ,  two series of dynamic light scattering 
experiments have been performed for the same scattering sample containing a standard 
Dow latex particle Suspension ( f =  42.5 nm). A F ( ~ )  were formed in a correlator with 
136 channels in full delay time scale (model BI 2020, Brookhaven Instruments). During 
experiments, the temperature of the sample and  the laser power (He-Ne laser, Spectra- 
Physics, model 124B) were continuously controlled to avoid the long-time instabilities. 
In order to remove dust particles from the scattering sample, the particle suspension 
has been filtered with the aid of a 0.2 p m  Nuclepore filter. Each of these two series 
of measurements includes a number of short-time measurements with N = 2 x 10‘ and  
one long-time measurement with N = 2 x lo*, but these two series have been performed 
with different delay timescales; lOT, and 2Tc (23) and  with different mean number of 
counts per sample time; A = 0.7 and A = 0.5, respectively. Standard deviations for 
relative statistical errors in long-time measurements are only 1% of those relative 
deviations in short-time measurements. For this reason these long-time data, after 
division of all channel values and baselines by factor lo4, are very good approximations 
of expected values for short-time measurements. In figure 3 are shown typical differen- 
ces $;”(T) - g ‘ * ) ( T )  = E,(  T )  + SB, ( l ) ,  (2), (12) for the first series of measurements (delay 
timescale lOT,), where all AF(2) have been normalised by using the ‘expected’ baseline 
taken from long-time measurement. Constant shifts in all correlator channels, SE, ,  
and slow frequency components in E , ( T )  are easily seen. In figure 4 are shown 
differences $”’( 7) - g ( ” ( T )  = e,(  7) - 7 )  (13), (171, realised for the same A F ( ~ )  as 
shown in figure 3, but $‘”( T )  have been normalised by using proper baselines obtained 
in each short-time experiment. Constant shifts, SB,, are fully compensated. Figure 5 
illustrates the similar differences as shown in figure 3 but the delay timescale is limited 
to the non-stationary range of e,( T )  (2 T, = second series of measurements) and constant 
shifts SB = SB, are subtracted. Because o f the  better separation between photodetection 
noise distribution Pph( T )  and diffusional noise Pd( T )  and P,( T )  (see figure 2), slow 
frequency components in E , ( T )  are more easily seen than in figure 3. 

7. Statistical errors in A F ( ~ )  and a size distribution 

Equations (4), ( 5 ) ,  ( 6 )  and (24) show the relationship between the size distribution 
n ( r )  and statistical errors in A F ( ~ ) .  Ag:” (T)  has a complicated character, governed by 
E , ( T ) ,  in which ‘slow’ components dominate (section 5 . 2 ,  figures 3 and  5 ) .  

Independently of the calculating method used for solving a Fredholm integral 
equation (4),  to determine SD from measured A F ( ~ )  by using the Siegert relation (3), 
‘fast’ noise components should be averaged during the calculation procedure but ‘slow’ 
deviations should be specially treated by each calculation method because slow changes 
in A F ( ~ )  are responsible for changes in SD. This is explained in figures 6 and 7. 

Figure 6 illustrates three size distribution functions (Schulz distribution, [30]) 
having the following, relative ‘widths’ A (standard deviation/mean value); A = lo-’, 
A+ = 1.1 x lo - ’ ,  A -  = 0.9 x l o - ’ ,  with P = 50 nm. 
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Figure 3. Examples of experimental, statistical error courses in unbiased A F ( ~ )  estimators 
(normalised with E, see sections 2, 3, 6 ) .  Differences between unbiased A F ( ~ )  estimators 
and the expected value, realised for-the same scattering sample. I ,  nonstationary range; 
11, stationary range. 

In figure 7 are shown differences of the corresponding A F ( ~ ) ;  A g y ’ ( r ) =  
g y ’ (  7) - g ‘ * ’ (  T ) ,  Ag?’(T) = g“’(  7) - g”’( T )  (normalised), calculated for hollow spheres 
such as lipid vesicles with the aid of (3) and (4) (program S I M V E ,  H Ruf, unpublished), 
by using conditions given in (23). 

In addition, this picture describes the differences for AF( 2) calculated for SD having 
the following relative widths: A = 3.16 x lo-’, A+ = 3.48 x lo-’, A- = 2.84 x lo-’ and 
A = lo-’, A, = 1.1 x A -  = 0.9 x lo-’. 
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Figure 4. Differences between biased A F ( 2 )  estimators (normalised with 8, see sections 2 ,  
3 , 6 )  and the expected value, realised for the same data as given in figure 3 .  I ,  nonstationary 
range; 11, stationary range. Calculated baseline errors, 6 B  = (8  - E ) /  E ,  are 0.0715, -0.0054, 
-0.0826, respectively. 

These three groups of simulated size distributions have the same range of relative 
width deviation, *lo%, but the corresponding relative deviations in ~ 4 2 )  are much 
less and vary from about 1 2  x for the 
third group of SD representing much narrower size distributions (figure 7 ) .  

for the first group of SD to about * 2  x 

Correlation functions g:"( 7) and g?'( r )  may be expressed as 

g f ' (  7) = g'"(  7) + Ag',"( 7) (36) 

where A g f ' (  r )  represents deviations shown in figure 7, which relate to an uncertainty 



1376 Z Kojro 

0 16 

008 

0 16 

0 08 

0 

i b )  

- 

t 
-0.16 1 L 

-016 

I 
t 

0 

-0.08 

-0 16 I L 
0 0 5  1 0  1 5  2 (  

X 

Figure 5. Differences between unbiased AF(2)  estimators (normalised with B; see sections 
2, 3, 6)  and the expected value, realised for the second series of measurements (delay 
timescale ZT,). Constant shifts S B  = SB, subtracted. 

in the widths of SD. Similarly to (241, by using (3),  we can write that 

g','(7)==g'''(7)+Ag~'(7)/(2g'1'(~)). (37) 
From the comparison of the expressions (24) and (37 )  it would result that the measure- 
ment time in a dynamic light scattering experiment should be long enough in order 
to obtain the standard deviation for statistical errors in A F ( ~ )  comparable to (not 
greater than) the expected uncertainty in A F ( ~ )  coming from the expected error in SD 
width, i.e. 

m a x [ a ( ~ ) ]  T = maxlAgk21(T)I. (38) 
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Figure 6.  Examples of size distributions of Schulz type, having the following relative 
widths: a :  A _  = 0.9 x lo- ' ,  b:  A = lo-' ,  c :  A, = 1.1 X lo-' .  

A 

Figure 7. Curves a, a'  represent differences between normalised autocorrelation functions 
calculated for distributions given in figure 6. Curves b, b' and c, c' are the corresponding 
differences between normalised A F ( ~ )  calculated for narrower Schulz distributions (see 
section 7 ) .  

From (38 )  one can estimate the necessary number of samples N or the necessary 
measurement time NT, which should guarantee the expected error in width A of SD. 

In order to determine [a(7)Imax we can use the variance (21), taking into account the 
fact that the limits for variance A N K , ? ( ~ <  + 0, 7, + 00) are nearly the same in mono- and  
poly-disperse cases in most of experiments (appendix A). 

In table 1 are listed the results of such estimations made for four Schulz distributions 
having various widths A but the same width deviation, f lo%, and the same f = 50 nm, 
under the assumption that ti = 0.5 and Tc/ T, = 68.  

These results are in a good agreement with the experiment and suggestions of 
several authors (see the article of Wiener and Tscharnuter in [ 5 ] ) .  From table 1 we 
see that there is a very steep dependence of the necessary number of samples (necessary 
measurement time) N on A ,  when the same SD width accuracy is expected, 

N - A-4 (39) 
and that very narrow distributions n ( r )  may in practice be unmeasurable, especially 
for large f values when a large sample time should be used in order to fulfil the 
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Table 1. 

A and expected Necessary 
range of A& 7) Necessary measurement 
deviation of A (maximum number time NT, 
( f  = 50 nm) over T )  of samples N ( T , = l O + s )  

3.16X lo-'  * 10% T 2  x 10-2 > 6 x  lo5 >6 s 

3.16X 10-'*10% * 2  x > 6 x  10' > 1 8 h  
10-'*10% * 2 x  10-3 > 6 x  10' >11 min 

lo->* 10% * 2  x 1 0 - ~  >6 x 10" > 7 5  days 

Table 2. 

A and expected 
range of Level of Measurement 
deviation of A statistical Number time NT, 
( i  = 50 nm) deviations of samples N ( T ,  = 10 ps) 

3.16X 10-'*0.3% 26.32 x =6 x 10n - 2  h 
lo-' i 3% =6.32 x =6 x 10' =2 h 

5 . 6 2 ~  IO- ' *  10% 16.32 x =6 x l o 8  = 2 h  
3.16X 10-'*30% =6.32 x =6 x lo8 = 2 h  
1 . 7 8 ~  10-**100% 16.32 x -6 x lo8 = 2 h  

lo-'+ 300% =6.32 x 1 0 - ~  -6 x 108 = 2 h  
- 100% r6.32 x lo-' =6 x 10' = 2 h  

conditions given in (23). We may next ask, what is the low limit in size distribution 
width determination when the measurement time is limited in dynamic light scattering 
experiments? It seems that a few hours can be the limit of measurement time when 
avoidance of long-time instabilities in a sample or in a measuring device is desirable. 
Table 2 lists the expected ranges of deviations in A for different SD when the same 
measurement time, 2 h, is used. 

We can thus say, based on the estimation shown in table 2 ,  that for P =  50 nm 
(T, = 10 ps) the low limit in SD width determination is about 5 x lo-*. 

8. Conclusions 

The Fourier analysis of the correlated noise [13] existing in A F ( ~ )  estimators, which 
is given in section 5, indicates that the statistical error course E , ( T )  can play the role 
of systematic distortion in one data set (figure 5 ) .  Based on the results from section 
5, one can estimate that in the monodisperse case half of the most probable period in 
diffusional fluctuations lies between 

0.8 T,, 0.5 T, 1.4 T,, (40) 
where T,, = 2 T, is the optimal delay timescale (23) in a correlator. Unfortunately then, 
this timescale is the most sensitive for 'slow' components in the diffusional noise. 

From table 1 we see that the measurement time, necessary in order to obtain a 
good result in SD, may be very long for narrow distributions. Thus, one cannot always 
reach a good result in a few seconds by increasing only the intensity of scattered light. 
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In this place a strong differentiation between uncorrelated photodetection noise, 
depending on the intensity of scattered light, and correlated diffusional noise in A F ( ~ ) ,  

influenced by Brownian motion of particles in a solution and depending on the number 
of samples N ,  must be performed. In order to decrease the diffusional noise in A F ( ~ )  
the number of samples N or  the measurement time T, must be increased (table 1). 

It seems, however, that stronger limitations than those given in table 1 should be 
introduced after taking into account the following facts. 

(i) Photodetection noise, the level of which depends on ii, contains mainly ‘fast’, 
uncorrelated frequency components (section 5 )  which should be averaged during the 
calculation of n ( r ) .  This type of noise, however, contributes indirectly to the width 
of n( r )  through the ‘smoothing’ procedures which are in fact present in each evaluation 
method (such as the regularisation parameter a in the fitting method, employed in the 
CONTIN program [7,12]). 

( i i )  The shape of ‘slow’ diffusional components (figure 5) may be very different 
from deviations Ag( ,Z)(T)  ((36), figure 7) and  this may be a source of distortions of a 
different type such as the appearance of new peaks in n ( r )  or  changes in E 

( i i i )  As can be easily checked, relative deviations in ~ ~ ( 2 1 ,  resulting from deviation 
in F, are similar to Ag?’(T),  which relate to SD width uncertainty, but have a much 
larger deviation scale. Because of this similarity we can expect that, depending on the 
actual value of the course of &,(TI, the final uncertainty in SD determination may 
‘transfer’ between i and A. 

(iv) Estimations given in table 1 relate only to standard deviations for statistical 
errors. These errors can be much larger in the individual experimental data. 

Having a spectrum (33) for experimental noise, one can try to simulate real data 
[29] and  check the influence of different error courses E , ( T )  on the final result. The 
existence of slow frequency components in E,(  T )  results mainly in size distribution 
changes and  in the appearance of additional distortions, being sometimes similar to 
those coming from dust particles in a solution. It seems then, that the scientists can 
see more dust particles in their solutions than really exist. Slow frequency noise 
components in A F ( ~ )  may be the source of additional peaks in final SD [29]. This is 
one of reasons that investigation of multimodal distributions, by using the dynamic 
light scattering method, is rather a difficult task [ 111. 

The formal analysis of correlations existing in statistical noise in AF( 2)  estimators, 
given in section 3, allows us to interpret individual terms occurring in expressions 
calculated by Saleh and  Cardoso [ 131 and to find out the proper variance for statistical 
errors in A F ( ~ )  estimators, when size distribution (or  linewidth) is determined (section 
3, (21)). This analysis indicates also that the so-called ‘problem of the normalisation 
error’ does not exist in the normalised dynamic light scattering data because of the 
‘self-compensation phenomenon’. This surprising result disagrees with the conviction 
of many people that statistical error in the measured baseline has a significant effect 
on the final result [5, 17,231. 

Experimental results (section 6, figures 3-5) are, however, in very good agreement 
with the theory (sections 2, 3 and  5 and figure 2). They indicate also other properties 
of error courses, which can be concluded from (8), (11) and  (15), (18). 

(i) The error course deviation in the non-stationary range of E , ( T )  should have, 
on average, the same sign as the constant shift 6B,. This is seen in the first and  third 
diagrams of figure 3. 

(ii) The term S&f, resulting from the normalisation and  error course deviation in 
the non-stationary range of E , ( T ) ,  should have opposite signs. These error course 
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deviations should be then partially compensated when the difference between g^( 7) 

and g ( 7 )  is calculated. This is seen in the first and third diagrams of figure 4 
(non-stationary ranges) while comparing with the same parts of figure 3. 
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Appendix A 

Based on the paper of Saleh and Cardoso [ 131, and taking into account properties of 
convolution and Laplace transform, we have for the polydisperse case when T~ 2 7, > 0 
(functions 1 ~ ~ 1 ,  lyLl, z,, U,,, in (Al)-(A4) are symmetrical) 

X 

IxLl = [ G ( r )  exp(-rT,) d r  (AI)  
0 

where 

G, = G * G (convolution) 
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Next, after separating the delay time dependence in all terms occurring in A,,,, (equation 
(8); see also [13]) for dependence on 7, (position) and T,  - 7, (delay), as for example 
in terms zL-, and z,,,, 

and by using again properties of convolution and the Laplace transform (for the 
calculation of products of x and y )  we obtain distribution G(T, 7,) which forms, 
together with C,(T, r’, T ~ ) ,  (30). Distribution G,-(T) in z,-,, (A9), and the correspond- 
ing distribution G,-(T) in xf-, do not depend on the position 7, (figure 3) but 
distributions in other quantities occurring in (8) depend on this position in the 
similar way as G,+(T, T ~ )  (A101 or G ,  (A4), i.e. they are vanishing when 7, + CO. For 
this limit we have G(T,co) =2G,-(T)+(2/A)(T,/Tc)G,-(T). 

T~ + 0, T,  + CO) in the polydis- 
perse case, we should point out that terms type x and y have the same limits either 
in mono- and polydisperse cases. For terms type z and U we have to estimate the 
quantity (7, + 0, T,  + 7,) [ 131 

In order to determine the limits for the variance 

X 

w J-, ix(t)14 dt  

I = [ J: J: G,(T) * G,(T) exp(-r t )  dI‘ d t  

I-’ x [ Jox Jox G,(T) exp(-rr)  dT d t  
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By expanding (l/I-).+ and  (l/r), in terms of moments of the distribution G,(T), we have 

(A12) 

(A131 

m, = (1/(2T))(1 +fm" ' - -$m'"+l ( lm '4 '  +i(m" ' ) ' )  - .  . . ) 
( 1 / T ) = ( i / f ) ( i + m " i - ~ " 3 i + % m i 4 ) - .  . . )  

d h l  = (r -r)'/(P), k = i , 2 , .  . . 
and hence we have, if the width of SD, A ,  is not very broad, c 4 as for the monodisperse 
case when G(T) = 6(r--r'). For example, when A = m = O . l  then c differs from 4 
less than 1%. 

Appendix B 

There exists the need for a commentary of some statements that have been given by 
Jakeman et a1 [ 141 and Saleh and Cardoso [ 131. It is rather difficult to agree with the 
statement that 'Drift of a mean photoelectron count rate during the course of a series 
of experiments (" . . . for reasons unconnected with the fundamental statistical proper- 
ties of the signal . . . " [ 14, p 5211) necessitates normalisation of each complete measure- 
ment' [14, p 5191. In  fact, there is a need for the determination of the baseline value 
in order to subtract it from a measured A F ( ~ )  for further size distribution (or linewidth) 
determination (2),  (4), (5). This must be done also in the case when no such extra 
drift of the mean photoelectron count rate is expected. On the other hand, the 
normalisation, in the sense of the division by a number, cannot change the final result, 
the accuracy of which is determined by the error course E , ( T )  (see sections 2 and 3) .  

One also cannot agree entirely with the formulation that the results of Saleh and  
Cardoso [ 131 are ' . . . a general expression for the correlation between the readings of 
various channels of a photon counting digital autocorrelator' [13, p 19071, but the 
sentence 'In this paper, the overall problem of statistical errors in photon counting 
spectroscopy is formulated. . . ' [13, p 18971 is valid. The digital reading procedure 
in dynamic light scattering measurement is simply a single-photon counting and results 
in uncorrelated photodetection noise in A F ( ~ )  but, on the other hand, this procedure 
may be a source of certain errors (we can call them 'channel correlations') because 
each channel content represents a mean value taken from counts in a certain finite 
time range T,. These errors should depend on the ratio Ts/ Tc but not on N. 

The problem of such distortions, appearing in digital techniques, has been investi- 
gated by several authors [ 14,31,32]. It seems, however, that the final result (Lorentzian, 
monodisperse case) [32]: 

g"'( 7 )  = 1 + (sinh2 y/ y') exp( -2r17.1) Y = T,/ Tc (B1) 
does not agree with the experiment because the pre-exponential factor is greater than 
1 and tends to infinity with T, -+ W. The idea of the temporal integration of the measured 
intensity is valid (equation (4.1) in [32]) but has not been realised to the very end 
because finally the autocorrelation function g"' is integrated, with the prior assumption 
that the spectrum is Lorentzian (equation (4.5) and (4.7) in [32]). One cannot U priori 
assume that the integrated intensity fluctuations have a Lorentzian spectrum. In fact, 
the temporal integration of Z ( r )  is a kind of low-pass frequency filter which reduces 
intensity of high frequencies and their power in & ( U )  or Pd(T)  (27), (29) and two 
different power spectra, unfiltered (Lorentzian) and  filtered, cannot correspond to the 
same autocorrelation function as shown in (27) and ( B l )  (the factor sinh2y/ y2  is here 
insignificant). This results from the properties of the Fourier transform. If F (  y, Iy l )  
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( y  = wTJ27r) is the filtering function resulting from the temporal integration of I (  t )  
then the intensity autocorrelation function, distorted by the digital reading procedure, 
may be evaluated by employing the Fourier transform to the reduces power density 
spectrum of the diffusional noise (26) 

g”’(x) = 1 + F ’ [ F * (  y, ly I )S,(y) ]  x = r /  T, 
In the monodisperse (Lorentzian) case (25) we obtain 

where ‘*’ is convolution. 
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